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An analysis is given of the characteristic flexural modes and frequencies of a linearly
elastic free—free spheroid in an ideal fluid. The finite element method is used to represent
the structural properties of a slender spheroid, employing a special element formulated
for this purpose on the basis of Euler-Bernoulli beam theory. A consistent added mass
matrix is derived from the exact solution of the infinite fluid potential problem,
truncated at a suitable number of terms. A consistent added stiffness matrix is obtained
for the buoyancy forces on a spheroid floating with its axis in a free surface, but other
free surface effects (associated with wave generation) are assumed negligible. Solutions
are computed for different aspect-ratio variable density spheroids iz vacuo, deeply sub-
merged, and floating. The results indicate the possibility of considerable distortions in
the lowest (‘rigid’) modes of slender floating bodies vibrating in a vertical plane, and
illustrate the difficulty of defining three dimensional reduction factors for use with a
simplified two dimensional theory. Derivation of the classical reduction factors for uni-
form density spheroids is given by way of comparison. The paper provides an illustration
of use of a finite element formulation, in conjunction with consistent added mass and
stiffness matrices, for a rational analysis of the structural dynamics of ships and other
marine vehicles.
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624 R.EATOCK TAYLOR

1. INTRODUCTION

The research reported here is intended as a stage in the development of numerical methods for
calculating ship structural response, leading to rational methods of evaluating the strength of
ships in waves and of assessing response to propeller and engine-induced excitation. Structural
dynamic problems are assuming a role of paramount importance with the increasing size and
complexity of current ships. Analysis of these problems is difficult, involving mathematical
representation and numerical evaluation of complex interactions, both structural and hydro-
dynamic. These include interaction between main hull and local response, and the three
dimensional hydrodynamic problem.

Numerical methods of solving these problems are currently under development, and the finite
element method is well advanced for idealization of the three dimensional structural properties
of ships (Kendrick 1970; Hylarides 1971). Not so well established, however, are compatible
methods of representing hydrodynamic interaction effects associated with vibrating ships. To
assist in the development of these ideas, it was proposed first to consider simple configurations
and to use the results from such studies to evaluate numerical methods for more realistic cases.
From the vibration standpoint, the simplest relevant configuration is the uniform beam; study
of this has led to valuable insight into the response of ships to dynamic loads, particularly wave-
induced response (Bishop & Eatock Taylor 1973). From the point of view of three dimensional
hydrodynamic calculations, the spheroid is one of the most straightforward geometries. For this
reason flexural vibrations of a spheroid are analysed in this paper.

Certain results for spheroids have in fact long been used in ship structural dynamic calculations.
This is because, in the analysis of the structural dynamics of a ship as a free—free beam, it has been
common practice to employ strip theory. This accounts for energy transfer between a vibrating
ship and surrounding water by first assuming the flow past hull cross-sections to be two dimen-
sional, hence obtaining an added mass corresponding to the section. The added mass of every
section is then modified by a reduction factor to take account of the three dimensionality of the
flow. The factor J, is associated with an assumed rth vibration mode, and it is based on the three
dimensional flow around a vibrating spheroid of the same length/breadth ratio as the ship. This
paper presents a modal analysis for prolate spheroids and describes the relation between J, and
the mode shape.

Clearly the modes depend upon the degree of material non-uniformity of the spheroid.
Previous investigations (see, for example, Lewis 1929; Lockwood Taylor 1930; Kruppa 1962;
Landweber 1971) have given results for mode shapes approximating the behaviour of spheroids
only of uniform density and elasticity, and have neglected the influence of added stiffness due to
buoyancy effects on floating bodies. The latter might lead to significant distortion in the lowest
modes in the vertical plane (conventionally termed heave and pitch) of relatively flexible ships
such as Great Lakers; but the phenomenon appears to have been disregarded until recently
(Bishop 1971; Bishop, Eatock Taylor & Jackson 1973).

Uniform and non-uniform spheroids, floating and submerged, are analysed here by the finite
clement method, and results are compared with those from previous analyses re-derived in the
first part of this paper. Finite element mass and stiffness matrices are developed for a spheroidal
element. A consistent added mass matrix for this element is derived from the exact fluid potential
theory, and a consistent added stiffness matrix is obtained for buoyancy forces. The results
illustrate use of these matrices to obtain mode shapes, frequencies and reduction factors J, for
spheroids.
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1.1. Notation

a major semi-axis of ellipse ¢ element number, time
a,, ¢, coefficients in series expansions T kinetic energy of element
4 finite element sectional area T; fluid kinetic energy
b minor semi-axis of ellipse T; fluid kinetic energy in two
D matrix given by (20) dimensional motion
A D,  matrix given by (38) Tp+  associated Legendre function of the
<, D matrix given by (25) first kind of degree p
= E Young modulus u longitudinal displacement of point
§ > E inverse of D on surface of spheroid
O : E inverse of D Up  associated Legendre function of the
= g acceleration due to gravity second kind of degree p
O I finite element sectional moment of |4 elastic strain energy of element
E g inertia w transverse displacement of point on
o J, three dimensional correction factor surface of spheroid
5% for rth mode x,y,z Cartesian coordinates
E; k added stiffness matrix X vector of influence functions given in
82 o K stiffness matrix appendix B
9%’ l finite element length 7,X¥  dimensionless coordinates at ends of
TS m added mass matrix spheroidal element
-k m transformed added mass matrix K parameter for ellipse (= (a2 —b2)%)
M mass matrix M, 0, v spheroidal coordinates ‘
n outward normal to surface of spheroid vy value of v on surface § of spheroid
N number of elements in finite element £ non-dimensional coordinate (= x/)
idealization Pb body density
p,r,s indices Jor: fluid density
P number of terms in hydrodynamic 0y, 09, Ty, Tg, T3, T4 functions of 7, y given in
solution appendix B
P, Legendre polynomial of degree r 1) velocity potential
q vector of generalized coordinates 0} frequency of vibration
o g*  transformed vector of generalized o, rth natural frequency
o ~ coordinates dressings
:é 9 vector of finite element nodal ! transpose of a matrix
> > displacements t superscript denoting element
8 : R diagonal matrix given by (27) property
1 Q
L O |
v 2. SOLUTIONS FOR THREE DIMENSIONAL IDEAL FLOW

AROUND OSCILLATING SPHEROIDS
2.1. Some general results

Throughout this paper it is assumed that the flow is incompressible and inviscid. Evidence
published to date suggests that this is a realistic assumption for vibrations of ships in the vertical

PHILOSOPHICAL
TRANSACTIONS
OF

plane, and it is a good starting point for analysis of coupled horizontal-torsional vibrations.
65-2
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626 R.EATOCK TAYLOR

A velocity potential ¢ may then be used, satisfying the Laplace equation
Vig =0 (1)

throughout the fluid region (assumed infinite at this stage), and a Neumann boundary condition

on the surface § of the spheroid. The flow is assumed to result solely from the oscillatory motions

of the spheroid, since this paper is concerned only with a body having zero forward velocity.}
A curvilinear coordinate system (x, 0, v) is employed, which is related to the Cartesian system

(x,y,2) by

X = Kpuv
y=k(1—p2)t(12—-1)isind (2)
z=k(1—p2)t(2—1)tcosb,

where k2 = a2 — D2

a and b are the major and minor semi-axes of the generating ellipse, and the spheroid is given by

rotating this ellipse
x2a+ 202 =1, a>b (3)

about the x-axis. The surface S of the spheroid is given by v = v, and the unit outward normal is 2.
Expressed in this system, the boundary condition on ¢ is

0¢[0n = [pa+ (afb) (1—p2)tcosOw] (v3—1)3[(v3—pu2)t on S, (4)

where # and # are longitudinal and transverse components of the surface velocity. The appro-
priate solution to Laplace’s equation for a deeply submerged spheroid undergoing lateral
vibrations of frequency w is

¢ = ﬁ:; T() U() cos 0 sin o, (5)

T3 and U} are respectively associated Legendre functions of the first and second kind. Some
properties of these functions are given in appendix A. The constants ¢, are obtained from the
boundary condition by using the orthogonality of the functions 773.

The kinetic energy 7t of the ideal fluid of density pr surrounding the vibrating spheroid is

given by )
0 1 72 ® dUj2p(p+
prJ‘ gb ¢d ~37a ;E pf)% Y AUN—=2 o ‘[;;‘b D sin? wt. (6)

If however the harmonic motions of the spheroid are defined by a vector of generalized coordi-
nates ¢, the fluid kinetic energy may be written (Milne-Thomson 1968)

Ty = 34'mq. (7)

This equation defines an added mass matrix m corresponding to the generalized coordinates q.
The vector q is determined by the longitudinal and transverse components of the surface displace-
ment, z and w respectively. For any particular motion the corresponding added mass matrix may
therefore be found. Furthermore, a three dimensional added mass correction factor may be

+ It should be noted that the influence of a ship’s forward velocity on wave-induced vibration amplitudes is a
problem to which a satisfactory solution has not yet been given. For a body in an infinite ideal fluid, hydro-
dynamic damping is thereby introduced, proportional to the forward velocity of the body. This is ‘dynamic’
(non-dissipative) damping. It corresponds to a transfer of energy between modes, analogous to the coupling
introduced when vibrating systems are rotated.
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VIBRATIONS OF SPHEROIDS IMMERSED IN IDEAL FLUID 627

obtained, if the two dimensional problem has been solved as well. For transverse motions of a
slender body, this factor J is defined by

__ kinetic energy of fluid in three dimensional motion
~ kinetic energy of fluid in two dimensional motion

(8)

2.2, The motions assumed by Lewis (1929)

Consider first the simplest case, in which  is taken as zero and w as a function of x only. This
corresponds to all cross-sections translating laterally without rotation, and was the assumption
made by Lewis (1929) in his study of the added masses of deforming spheroids. Kinematically
this implies deformation of the body in pure shear. The displacement w is written as a sum of a
series of polynomials in the coordinate 4, the coefficients a, of the series determining the shape of
the deformed axis of the spheroid. Specifically

w(p) = § (sz(—'l%%coswt E a, ’(‘“) cos wt, (9)
or w(p) = [al(l) +a,(3u) +ay (15”2— 3) + ] cos wt.

The terms corresponding to 4y, @, and a4 represent respectively heave, pitch and an approximate
two node distortion of the spheroid. Calling these ‘modes’, in a somewhat loose terminology, we
have thereby expressed w as a sum of modes w,

w(p) = § a,w,(p) cos wt. (10)
r=1

The coeflicients a, cos wt may, however, be thought of as generalized coordinates, so that we

may let
q' = [a, cos wta,cos wtascoswt...], (11)

writing the transpose of g for convenience. The corresponding added mass matrix may then be
found, by expressing the coefficients ¢, in (6) in terms of the coefficients a,,.

The expression for ¢ in (5) is substituted into the boundary condition given by (4), by using
the assumptions that # = 0 and w is given by (9). This gives on v = v,
® dU} (n3—1) . ® a (v§—1)* .

1 P N0 T = _ 1 0

p}z‘,l ¢p Th(p) & < _luz)%cos 0 sin wt 'r§1 wa, T}H(u) < ACERL cos 0 sin wt.

Next we multiply this equation by 7} (x) and integrate over the range —1 < u# < 1. Use of the
orthogonality property of the functions T3 (x), described in appendix A, leads to the result

ka (dUN-1
Cp == —u)ap7(-—d—]-)£)v=v. (12)

The expression for kinetic energy in (6) therefore becomes, with p replaced by r,

. voUr(vg) J2r(r+1) . ,
Tf = Inprab’w? E a? [(v2 1) UF () 2r1 sin2 wt

= 1q'mgq, (13)
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628 R.EATOCK TAYLOR

where use has been made of the definition of g in (11). The corresponding added mass matrix,
denoted m in this case, is seen to be diagonal, with terms given by

2r(r+1) [( =1, Ul (v) )], r=1,2,.... (14)

o \
M = mptabt = e =) O o

We observe that this added mass matrix corresponds to generalized coordinates defined by (9)
and (11). Only because the displacement w has been expressed in terms of these particular
‘modes’ is this matrix diagonal. The modes are not strictly of physical significance, and it is
fortuitous that they closely approximate the natural vibration modes of a solid spheroid of
uniform density.

To obtain the three dimensional added mass correction factor J,, corresponding to ‘mode’ r,
we require the kinetic energy of the fluid in two dimensional motion. This may readily be
shown to be

r=1s=1

. ® 1
Ti = tomprab® 3, 3 arasf (1= p?) w,(1) w(p) dpe sin® wi
-1

© 2r(r+1)
= 142 b2 2
winpra 1'§1 a; il

sin? wt. (15)

Hence the Lewis reduction factor J} is given by

TO [ v Udn,) |
Lo f | “0-r\"0/
L“W}h%mmd’ (16)

where the superscript r indicates the kinetic energy associated with ‘mode’ 7.

2.3. The motions assumed by Lockwood Taylor (1930)

Consider next how this simple case is modified when it is desired to represent flexure of the
body rather than deformation in shear: the added mass matrix thereby obtained is related to the
three dimensional added mass reduction factors derived by Lockwood Taylor (1930) and
discussed by Kruppa (1962). It is assumed that cross-sections normal to the neutral axis remain
plane but rotate through the angle dw/dx. Hence points at radius y on the surface of the body
translate axially through the distance z given by

u = —ycos O dw/dx, (17)

in addition to their lateral translation w. As before we take

wlp) = 020] a,w,(it) cos wt.
r=1
We also now have
u(p, 0) ==:—écost9 > ar(l—ﬂz)%d—wr—(—@coswt. (18)
a ) du

If we substitute the expression for ¢ in (5) into (4), using (18), we obtain the result on » = p,

i dU} (v3—1)% .
1 D 0
2;1 cp Tp(e) EONICETL cos 0 sin w?

_ 4 b dw,(p)
= Z —'war[_zliu d/l;

r=1

a _ 2} (g—1)# .
+bwr(ﬂ)] (1—p?) (V%_‘uz)%cosﬁ sin wt.
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This equation is simplified by multiplying throughout by 7(#) and integrating over the range
—1 < p < 1. Using again the orthogonality property of the functions 73 (#) given in appendix A,

we find
dUn -1 2
Cp = —w-Kb—a (~d7”)v=v r§1 D,.a, (19)
1 b duw, .
where Dy = [ Junti) =5 SR (1= o)t T3 (20)

A new set of generalized coordinates may now be defined, so that analogous to (11) we have
q*' = [af coswiaj coswtaj coswi...], (21

where the coefficients 4}, are defined by
% o0
ay = Elear, p=12, ... (22)
=

Insertion of (19) into the expression for the fluid kinetic energy, in (6), leads to
Ty = §q*'mqg*, (23)

where the added mass matrix is again given by (14). Note, however, that in this case 7 corre-
sponds to a different set of generalized coordinates g *. In terms of the original set, g, the kinetic

energy is
T; - 3¢'D'mDq,

since the generalized coordinates are related by

q* =Dq:

where D is the matrix whose elements are D,,.. The added mass matrix m corresponding to the

pre
coordinates q is not now a diagonal matrix, when flexure of the body is represented. In fact

m = D'mD. (24)

To obtain the correction factors JT corresponding to the Lockwood Taylor assumptions, we
use the definition of w,(x#) implied by (9). Distinguishing this case with a bar, we have

By = [ [0 -Gt (24| 7300 e

The relations given in appendix A may be employed to provide the results

0, p>rn
b2
D = [1”‘0’"—1);5]: p=r (25)

pr

3@+ )= (=S, p<r

The kinetic energy of the fluid in two dimensional motion (7}) must then be written in terms of
the coordinates g*. This is because each factor J,F is associated by Lockwood Taylor with one
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630 R.EATOCK TAYLOR

term of the series expansion for ¢ in (5). One term ¢,, is therefore required, and this is associated
with ¢} and not ¢,, as seen from (19). By use of (15) 77 may therefore be expressed

Ti = }q*' E'REG*, (26)
where R is the diagonal matrix whose terms are
2r(r+1)
"= o nprab? (27)

and the matrix E is the inverse of D. Since D is an upper triangular matrix, so also is E, and its
terms are given by

- % D E

5 v, D ‘s T —p = any positive even integer,\
pp I=D T8, D r% ...

. 0, 7—p = any positive odd integer,

By={" (29)
D, r=7p
0, r<p.
Using (8), (23) and (26), we obtain the Lockwood Taylor reduction factor J;' given by
JF = JF
p§=':1 Eir Ry (29)

o+ )T L p(p+1) 5]
= Jr 27+ 1 LE‘I 2p+ 1 Eg’] ’

since the terms of the summation beyond p = r are zero.
By use of these expressions it may be shown that the Lewis and Lockwood Taylor correction
factors for the lowest few modes are related as follows

JIT = J].L:

. b?\2
J2 = JZL(].'-—a—') Py
T : b%\? 754\ 1

bZ 2 b2 2 bZ 2 27 b4 -1
s =ap(1=5) (1-05) | (-5) + 3]
Furthermore for very slender spheroids we may neglect the off-diagonal terms of matrix D, and
the Lockwood Taylor and Lewis factors may then be related by the simple expression
. b2 2
JE = JE [1_ (r— 1)ﬁ] . (30)
We have thus found the relation between three dimensional correction factors for spheroids in
motions characterized by flexure and shear. These two simple examples illustrate cases in which
the added mass matrix for the spheroid may seemingly be found exactly. However the matrices

so obtained are related to a set of generalized coordinates ¢, which are not of great use except for
these particular cases. No physical meaning attaches to the coordinates, except for ¢, and a, which
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correspond to amplitudes of heave and pitch respectively. Nor is this formulation readily appli-
cable to the more general problem of a body whose surface is that of a spheroid, but whose
density or elastic properties are non-uniform. Thus it is not clear how the Lewis and Lockwood
Taylor approaches can be of direct help, if information is required about any modification to the
three dimensional reduction factor for vibrations in the two node mode, resulting from significant
asymmetry in the mode due to asymmetry in the inertia or stiffness of a ship hull. By generalizing
the formulation, we may use a numerical method of finding characteristic modes and frequencies
of a body, coupled with solution of the hydrodynamic problem and development of a ‘physical’
added mass matrix.

3. FINITE ELEMENT MASS AND STIFFNESS MATRICES FOR A SPHEROID
3.1. Structural mass and stiffness matrices

The flexural modes and frequencies of a submerged spheroid, of variable density and elasticity,
may be obtained within any reasonable degree of accuracy by the finite element method. The
procedure is described in this and the following section of this paper. It is of value as an illustra-
tion of the manner in which the added mass matrix is derived and used for a more practical
system of generalized coordinates than considered above. Furthermore it is felt that results
obtained by this development may have wider application than to the very special case for which
they are derived, which is the non uniform beam whose interface with the surrounding fluid is a
spheroid.

The finite element method itself has been placed on a sound theoretical foundation which is well
documented, for example by Zienkiewicz (1971). Results, however, for a spheroidal element have
not apparently been published. This is due to the very specialized nature of such an element, its
raison d’étre being the spheroidal surface required for straightforward analysis of the fluid
problem. We shall here first outline the development of consistent stiffness and mass matrices for
non-uniform beam elements, and then give results for the special case when the element is a
segment of a slender spheroid. The derivation follows that of Gallagher & Lee (1970) and is based
on Euler-Bernoulli thin beam theory.

The beam is divided into N elements by planes perpendicular to its axis. It is assumed that the
vertical displacement w within the fth beam element may be expressed in terms of the displace-
ments and rotations at both ends (the finite element nodes for the beam element). Thus

w() = X, (&) wi+ X,(§) 0F + Xa(E) wh+ X, (8) 05}
= X(§) qi,

where £ is a non-dimensional coordinate along the neutral axis. The vector of nodal displacements
is defined by

(31)

t
wy
t
g = |2
0 t
Wy

:

The influence functions X;(£), == 1, ..., 4 are those which render (31) the exact deflected shape
for a uniform beam in static equilibrium under the action of end shears and moments. They are
given in appendix B.

66 Vol. 277. A.


http://rsta.royalsocietypublishing.org/

\

A \

/&

Ly 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

@ A
/A \

Y & |
s \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

632 R.EATOCK TAYLOR

The kinetic energy 7 of the element, of density pp, area 4, length /, is
1 ow\ 2
- flan()

1

= 146 [ Amix (9 X(¢) e gt

Hence the mass matrix for the element is

1

M= [ ap X (©X(E) de. (32)

The elastic strain energy V of the element is

1 (1ET (0%w)?
SHEICOR
1EId?2X'd2X
=1igt'| == "= ¢
_2q0 0 13 dgg dgg dqu'

Hence the stiffness matrix for the element is

Kt~ flEIde’ 42X

o B dE g e (33

These matrices have been evaluated by Gallagher & Lee for non-uniform beams whose
sections vary according to

A = dy(1+0E), (34)

and I=I,(1+7EF), (35)

where 4,, I, are the cross-section area and moment of inertia at the element’s left hand end. The
geometry and sign convection is shown in figure 1a.

We require the appropriate matrices for the spheroidal element defined in figure 14. Points in
the element are defined by a dimensionless coordinate # measured from the centre of the spheroid

I (6)

e

T —_ (@
™~

A, Al

0 1_§O n X

7
|

Ml)el /'*M2762
et
F,w VF,,w,

Ficure 1. (a) Geometry and sign convention for non-uniform beam finite element.
(b) Geometry of spheroidal element.
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from which the segment is taken. The dimensionless coordinates of left and right hand ends are
respectively 9 and . The major and minor semi-axes of the spheroid are a and b, as before. Thus

Ay = wh?(1—9?), A= wb*(1—u?).

1—pu?
Therefore 4= Ao]‘f;é'
i A Gk
Similarly I= 10(1 —)E
However £= ﬂ’
X—7
so that w=n+(x-1n§ (36)
. _ C2(x=m) . (X—m)?
This leads to A—Ao[l 1—7° - 1—g2 &,
N 29(x =) ,  (X—1)%,,]?
and I“‘IO[I'— 1—7° £~ 1= e

Rather than (34) and (35) we need
4=4,(1+ T 0;8),

i=1,2
4: .
and Izlo(l—l— o Tigz),
i=1
where oy = ——2771({;277) , etc.,

the other terms being given in appendix B. By using the results of Gallagher and Lee fora = 1, 2
and f = 1,2,3,4 it is a simple matter to obtain the appropriate matrices for the spheroidal
element. These also are written out in appendix B.

These mass and stiffness matrices are element matrices corresponding to the two generalized
coordinates at either end of the ¢th element, wt, 0%, and wi, 0%. The (2N + 2) generalized coordinates
for the complete spheroid of N elements are contained in the vector

© o (l O 2 02 13 O3 N+19N+1
qo = (wi 01 wiO0F wi 03 ... w7 7107,

The body mass matrix M and stiffness matrix K for the complete free—free spheroid are therefore
square matrices of order (2N + 2); they are formed by assembling the element matrices along the
principal diagonal, such that the first two rows and columns of the /th element matrix enter the
same locations in the body matrix as the last two rows and columns of the (¢ — 1)th matrix. This is
a particularly straightforward example of the usual finite element procedure of forming overall
mass and stiffness matrices from element matrices (Zienkiewicz 1971); in this case it is simplified
by the fact that only two elements meet at a node, and by the free-free boundary condition.

3.2. Hydrodynamic added mass and stiffness matrices

The next step in this matrix formulation is to obtain hydrodynamic matrices corresponding to
the finite element generalized coordinates q,. In this section we derive the added mass matrix m
and added stiffness matrix k for a spheroid in fluid of density ps.

66-2
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We have shown that an added mass matrix for flexure of a spheroid may be obtained from

m = D'mD, ((24) repeated)
where the terms of matrix D are given by
1 b? dw,(p )
Dy = [ Joto) -GS -t T de ((20) repeated)

and 7 is obtained from (14). The terms of m correspond to as yet unspecified generalized
coordinates implied by the displacements w,. By relating the w, to the finite element coordinates
gy, we may find the corresponding finite element matrix m.

Within the #th element it is again assumed that a displacement w may be written

w(p) = X(u) g6

This is (31) expressed in terms of the variable x, through the transformation of (36). We define
w,(p) as the deflection function for the complete spheroid corresponding to a translation wf at
node ¢, when all the other generalized coordinatesin g, are set to zero. Similarly we define w, (%)
as the deflexion function corresponding to a rotation 6%, It is assumed that r = 2¢— 1. Then both
w,(u) and w,,,(u) are zero everywhere except within the elements ¢—1 and ¢ on either side of
node ¢ (at which point # = y;_; = %,). Thus

+r§ﬁ; E ;} Be—1 S U < X1 t=2..,N+1,
w,(p) = X (u)

(i) = m)} MEpS A e
From these expressions the terms D, of (20) may be evaluated.

With the exception of those terms corresponding to generalized dlsplacements wi, 0}, wit,
6+ the terms in D involve contributions from two adjacent elements. The arrangement of the
individual contributions in the complete matrix may be organized as follows. We assume that
the infinite series hydrodynamic solution may be truncated at the term p = P, without significant
loss of accuracy in determining the lowest modes. This assumption may be checked by conver-
gence studies based on computed results. We may therefore construct a P x 4 matrix d® whose terms

are given by
£ 400

dty = b [*| 200 -

There will be one such P x 4 matrix for each of the N elements. For a particular displacement
vector g, there is a corresponding 4 x 1 element vector q§. The column of the matrix D which is
associated with this g, therefore corresponds to the equivalent column of the P x (2N + 2) matrix
D, in

](1 12} TA() dp. (37)

N
Dyg, = % d'q;, (38)

The pth row of Dy is formed by inserting the first two rows of dt into the same locations as the
second two rows of dt—1.
Finally the added mass matrix m associated with the finite element generalized coordinates g,

is given by
m = DjinD,. (39)
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Evaluation of the terms of m is most simply achieved through use of certain recurrence relations
for the generalized Legendre functions 77} and U}, described in appendix A. Each term involves
the integral of a polynomial, which may in theory be obtained in closed form. However, because
of the large number of terms in each polynomial when P is large, the added mass matrices have
here been computed by sixteen point Gaussian quadrature. The resulting integrations are ‘exact’
for polynomials up to degree 31, hence up to the terms given by P = 29. The matrix we obtain is
consistent with the finite element mass matrix derived previously, and the two matrices M and m
may be added to give a ‘virtual mass’ matrix for the submerged spheroid. For the floating
spheroid, an approximation to the added mass matrix is $m, and this must be added to M for the
virtual mass matrix.}

Next let us consider the added stiffness matrix. The matrix we shall derive corresponds to the
simple hydrostatic restoring forces associated with displacement of the spheroid from a position of
equilibrium with its axis lying in the free surface. Such an approximation is consistent with that
described above for the added mass matrix of a floating spheroid.

At a section of a body where the waterline beam is 2y, the restoring force is 2p;gy per unit
displacement. The work done in a displacement w of the section is }(w?) (2prgy). For the ith
element the work done is

1
[, wier pranac - 1ateat
where kt is the added stiffness matrix given by

K = [ 2pegyix(€) X() . (40)

This should be compared with (32) and (33) for the mass and stiffness matrices. For a spheroid in
the coordinate system of figure 1, this reduces to

X
kt = 2prgab f (1= p2) 2 X" (1) X (p) dpe
7

The terms of kf may not be evaluated in closed form, because of the radical in the integrand. As
for the terms of d?, they are here evaluated by sixteen point Gaussian quadrature. The total
(2N +2) x (2N +2) added stiffness matrix k is then assembled in the same way as the stiffness
matrix K. The two may be added to obtain a ‘virtual stiffness’ matrix for the spheroid.

4, CHARACTERISTIC MODES AND FREQUENCGIES FOR VARIABLE DENSITY SPHEROIDS

Free flexural vibrations of the spheroid in an ideal fluid are governed by the equations
(K+k)q—0*(M+m)q,=0. (41)

We now proceed to evaluation of the eigenvalues and eigenvectors of this system of equations, for
several examples. Thereby we illustrate the characteristics of the mode shapes and frequencies of
submerged and floating bodies, the significance of distortions in the lowest two modes, and values
of three dimensional added mass correction factors.

1 Such an approximation is valid for the frequency range in which wave generation by the vibrating spheroid
at the free surface may be neglected. The results of Kim (19635) suggest that for a rigid spheroid this corresponds
to w >1.5 4/(g[b). In this range the free surface is approximately a surface of constant potential, and the flow

approximates that around a spheroid in an infinite fluid. The added mass matrix however is obtained by inte-
grating pressures only over the lower half of the spheroidal surface.
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The accuracy of the results depends on the accumulation of round-off error in the numerical
computations, and on the accuracy of the discrete idealization of the continuum problem. There
was no evidence of numerical instability in any of the computations of results presented here, all
of which were obtained by using double precision words on an I.B.M. 360/65 computer. It is
thought that there is no significant error in any of these results due to round-off. The accuracy
of the finite element idealization, and the significance of truncating the infinite series solution of
the hydrodynamic problem, were investigated by convergence studies.

L 100m

()
|

100m

|
F1GURE 2. (a) 10 x 1 encastré half spheroid. (b) 10 x 1 free—free spheroid.

TaABLE 1. CONVERGENCE STUDY OF A 10 x 1 ENCASTRE HALF SPHEROID IN VACUO

number of
elements, N ,[min ,[min
1 27.6576 127.034
2 27.6497 121.523
4 27.6462 121.180
‘converged’ 27.6449 121.158

1 c
frequencies, @

It would be desirable to know whether the results obtained by means of the spheroidal finite
element in fact converge to the ‘correct’ values. This should be tested by computing results for
cases whose solutions may be found by other methods. It was hoped that it might be possible to
check the formulation by calculating results for a spheroidal cantilever in vacuo. However,
although closed form solutions for natural frequencies of several types of non-uniform cantilever
may be found in the literature, this author has not yet been able to discover the case of the spheroid.
Nevertheless, for possible future reference, natural frequencies were computed by this finite
element formulation for a 10 x 1 half spheroid} encastré at the section of maximum area, as
shown in figure 2a.

The eigenvalue analysis in this and subsequent computations was performed by using an I.B. M.
subroutine based on the Jacobi method. The results are given in table 1, which refers to a spheroid
of uniform density pp = 1000kg/m? and elastic modulus £ = 1000 M Pa, with half minor axis

= 10.0m. All frequencies are in cycles per minute (c.p.m.). Results are given for 1, 2 and 4

1 An 7 x 1 spheroid is defined by afb = r.
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element idealizations, the elements in cach case being of equal length, respectively 100, 50 and
25m. The lowest frequencies w; and w, of this non-uniform cantilever are seen to converge very
rapidly. We may obtain approximations to the ‘converged’ values using one of Richardson’s
extrapolation formulae (Salvadori & Baron 1961). To find the converged frequency «°, using
three results w®, »® and w® from idealizations with N, N, and N; elements respectively, the
appropriate formula is

Nip® Nio® Nio®

O W) (=N (- (VE- ) T (VE— M) (-9’

Applying this to the results of table 1 we obtain the ‘converged’ frequencies tabulated in the
last row.

TABLE 2. CONVERGENCE STUDY OF 10 X 1 FREE-FREE SPHEROID DEEPLY SUBMERGED

number of number of

elements, N terms, P ©;[min W,[min J¥ J¥
2 8 29.0225 68.5939 0.82852 0.76516
4 5 28.9813 66.6810 0.82882 0.76382
4 8 28.9813 66.5307 0.82882 0.77183
4 12 28.9813 66.5304 0.82882 0.77185
8 5 28.9753 66.5446 0.82886 0.76372
8 8 28.9753 66.3833 0.82886 0.77227

‘converged’ frequencies, w° 28.9737 66.3669

If E1, and m, are the flexural rigidity and mass per unit length at the encastré end of a cantilever

of length [, the natural frequencies may be expressed by

w2 = KA(ELmyi%)t.
For the spheroid the converged frequencies lead to £, = 2.406, £, = 5.037. By comparison, the
known solutions for a uniform cantilever are £, = 1.875, k, = 4.694,

Next a deeply submerged 10 x 1 free—free spheroid was examined. The geometry is indicated
in figure 2. The fluid density p; = 1000kg/m?® and again pp = 1000kg/m3, E = 1000 MPa.
The results for several idealizations are given in table 2. Consider first the solutions which use
8 terms in the series of associated Legendre frunctions for the hydrodynamic analysis (P = 8).
Results are given for cases with 2, 4 and 8 equal length elements. The frequencies w; and w,,
corresponding to two and three node modes of flexural vibration of the free—free spheroid, also
converge rapidly.T Using the extrapolation formula again, we obtain the converged frequencies
given in the last row of table 2. These figures suggest that the 4 element idealization gives results
that are within 0.03 %, and 0.3 %, of the ‘correct’ values for w; and w, respectively. Subsequent
results are therefore all based on representation by four finite elements, since we are at this stage
interested only in the lowest modes (r = — 1, 0, 1, 2).

Consider next the values in table 2 computed from the 4 element idealization of the 10 x 1
spheroid, using 5, 8 and 12 terms in the series of associated Legendre functions. Within six figure
accuracy o, is unchanged by using more terms than 5; w, is decreased by 3 in the sixth significant
digit if 12 instead of 8 terms are included. These findings suggest that 8 terms are sufficient, and
this was assumed in obtaining subsequent results reported herein.

Among these results are values computed for a three dimensional reduction factor J;* for the

+ Note that for a free—free beam it is convenient to associate the lowest two modes with » = — 1, 0. For a beam
in vacuo these are rigid modes.


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

FA \

PHILOSOPHICAL
TRANSACTIONS

A
A

/

AL

SOCIETY

Y B \

"_;

NI
olm
~ =
kO
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

638 R.EATOCK TAYLOR

rth characteristic mode. This is defined as the ratio of (kinetic energy of fluid in three dimensional
(3D) motion for a mode shape calculated assuming 3D motion) to (kinetic energy of fluid in
two dimensional (2D) motion for the same mode shape). An alternative definition would have
as the quotient (kinetic energy of fluid in 2D motion for a mode shape calculated assuming 2D
motion). For a uniform spheroid the resulting values of J;* would be almost identical, since the
mode shapes are virtually the same. For a non-uniform spheroid, it is arguable that neither
definition is more logical than the other, since a third definition of the quotient might be (kinetic
energy of fluid in 2D motion for a mode shape calculated assuming 2D motion and the correct
J¥ value). The difficulty arises because the distribution of 2D added mass will generally differ
from the non-uniform spheroid mass distribution; hence different J values will lead to different
mode shapes, but the correct mode shape is not known before J has been evaluated. These
differences are small for a slender beam, but they underline the inconsistencies in use of a three
dimensional correction factor applied to a two dimensional added mass distribution. A rational
approach requires a full three dimensional analysis throughout. We have here used the first
definition given above, since the three dimensionality of the flow is most clearly illustrated by
comparing results for motions following the same modal pattern.

TABLE 3. THREE DIMENSIONAL REDUCTION FACTORS J, FOR
DEEPLY SUBMERGED SPHEROIDS

Lewis factor J¥ L. Taylor factor J7 f.e.m. factor
r A N r A A J:‘
present values in present values in 4 elements
spheroid mode? values Todd (1962) values Todd (1962) 8 terms

10x1 -1 0.9602 — 0.9602 —_— 0.960
0 0.9105 — 0.8924 —_ 0.892

1 0.8586 0.858 0.8243 0.825 0.829

2 0.8080 0.811 0.7592 0.760 0.772

8x1 -1 0.9447 — 0.9447 —_— 0.945
0 0.8798 —_ 0.8525 —_ 0.853

1 0.8155 0.818 0.7647 0.764 0.772

2 0.7557 0.758 0.6842 0.682 0.704

6x1 -1 0.9171 — 0.9171 —_ 0.917
0 0.8289 —_ 0.7835 — 0.783

1 0.7483 0.752 0.6656 0.674 0.678

2 0.6779 0.675 0.5634 0.564 0.599

4x1 -1 0.8598 — 0.8598 — 0.860
0 0.7349 — 0.6459 — 0.646

1 0.6349 — 0.4795 — 0.508

2 0.56558 —_ 0.3462 — 0.426

1 Note that for the free—free spheroids the modes are numbered in an order corresponding to the notation of
heave (—1), pitch (0), two node vertical (1) and three node vertical (2).

The values of J¥ for modes 1 and 2 of the 10 x 1 deeply submerged spheroid are indicated
in table 2, calculated from the several idealizations. Results of the four element eight term
idealization again appear to have converged, to the third significant digit.

A by-product of computation of the added mass matrix for the spheroid, through use of the
recurrence relations in appendix A, is a set of values of Lewis and Lockwood Taylor factors
JEand JI. These are given by (16) and (29) respectively. The results for modes — 1, 0, 1 and 2
of four uniform submerged spheroids are given in table 3. Tabulated alongside are some values
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quoted by Todd (1961), and values of J;¥ computed by the finite element method according to the
first definition above. It is apparent that the figures given by Todd are not all identical to the
corresponding values computed here, but this is probably due to small errors introduced into
manual calculations of the earlier figures. More significant is the difference between the values of
JF and J¥, particularly for the spheroids of shorter length to breadth ratio. In both cases flexural
rotation of cross-sections is assumed (in contrast to the calculation of JF), but J;¥ is based on a
reasonably precise evaluation of flexural mode shape. The derivation of J;¥, based on simple
polynomial modes, in all cases overestimates the three dimensionality of the flow. It appears that
this effect would be considerable in the higher modes; furthermore the discrepancy would
presumably be greater still if the calculation allowed for significant shear deformation in the
higher modes. In the — 1 mode, however, in which there is no cross-section rotation during
submerged motions, the values of J;, JT, and J*, should clearly be identical: the computed
results in table 3 confirm this.

(@) ‘
<:l ? ’ D ~ Tom
' 40m ! 4 : B

Om 40m

b
01( ) 02 f* 03 r~ 64 r~ 05

T % %L

Ficure 3. (¢) Numbering scheme and geometry for 8 x 1 spheroid examples.
(b) Degrees of freedom for four-element idealization.

TABLE 4. PROPERTIES OF 8 X 1 SPHEROID EXAMPLES

element densityt/kg m—2
A

spheroid e \
type element 1 element 2 element 3 clement 4
A 1000 1000 1000 1000
B 2100 500 500 2100
C 500 500 500 3700

fluid density = 1000 kg/m3.

1 Element densities are halved for floating spheroids.

The influence of mode shapes on J;* has been examined by performing calculations for three
different 8 x 1 spheroids. The first, A, is of uniform density; B is symmetric about the mid point,
but the element at either end is denser than the centre elements; C is unsymmetric, an element at
one end being denser than the other three. All three spheroids have the same total mass. Their
properties are described in figure 34 and table 4. Their dimensions were selected to provide
frequencies of the same order as those of a very large tanker or Great Laker. Nine cases were
analysed, as indicated in table 5, corresponding to vibrations in vacuo, deeply submerged, and
floating. The elastic modulus of the spheroids was the same in all cases with the exception of case 4,
in which E was reduced by a factor of five to investigate the characteristics of the lowest modes of
a more flexible body. The two values of modulus which were chosen lead to natural frequencies
of the floating spheroid slightly higher and slightly lower than those of a typical 200000 tonnes

67 Vol. 277, A,
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dead weight tanker. The results in table 5 give for the lowest modes (r = — 1, 0, 1, 2) the natural
frequencies w,, values of the factor J;*, and mode shapes expressed in terms of the ten degrees of
freedom of the four finite element idealization shown in figure 3.

Some of the mode shapes have been plotted in figure 4 and figure 5. To achieve reasonable
accuracy it was necessary to compute values of the deflexion curves at intermediate points
between the finite element nodes. This however was a simple matter, since the deflexion at any
point within an element may be expressed in terms of the nodal displacements w and ¢ at either

end, by using (31). Modes — 1 and 0 of the symmetric spheroids iz vacuo and deeply submerged
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Ficure 4. Shapes of ~1 mode (‘heave’) for submerged and floating spheroids.
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are true rigid body modes (see cases 1, 2, 5 and 6). The corresponding modes of the floating bodies
show evidence of distortions (cases 3, 4 and 7), the relative magnitudes of which are compared in
figure 4 for the ‘heave’ mode. Even if account is taken of the exaggeration introduced by the
false origin in figure 4, the amount of distortion in this so-called ‘rigid’ mode is surprising.
Assessing relative flexibilities by reference to ‘two node’ natural frequencies, we can postulate
that the — 1 mode of a 200 000 td.wt tanker having w; = 27 min—! may lie between the curves in
figure 4 which represent cases 3 and 4 (corresponding to w; = 32 min~! and w, = 22 min~!
respectively). The possibility of this amount of distortion in the ‘rigid’ mode of a real ship is a
matter which should be investigated further: in the case of very large ships, this will probably be
influenced by wave generation at the free surface, an effect which has of course been neglected
here. Another important influence is illustrated in figure 4: comparing the mode shapes for
cases 3 and 7 we see the very marked effect of varying the distribution of mass along a ship. This
also influences the natural frequencies of the lowest two modes of the floating spheroids. Com-
paring cases 3 and 7 in table 5 we see that the order of modes is reversed: for the uniform spheroid
the lowest frequency corresponds to heaving (with distortion), whereas for case 7 the pitching
frequency is lowest.

One of the truly rigid modes of beams iz vacuo or deeply submerged is also influenced by mass
distribution. We are referring of course to the influence of asymmetry, which shifts the axis about
which pitching occurs. This is illustrated in figure 5. Mode 0 is indicated for cases 1 (symmetric
in vacuo), 8 (unsymmetric in vacuo) and 9 (unsymmetric submerged). The presence of a fluid
decreases the asymmetry, shifting the axis of rotation back towards the mid point of the beam.

Also shown in figure 5 are the two node vibration modes for cases 1, 5, 6 and 9. We see from
table 5 that of the nine cases these four represent the significantly different shapes of mode 1.
Case 1is very similar to cases 2, 3 and 4; case 6 is close to case 7; and case 8 does not differ greatly
from case 9. But the various shapes clearly lead to different values of J7', the three dimensional
reduction factor for the 8 x 1 spheroid in mode 1. The maximum variation is 4 %,, compared with
7 %, between the corresponding Lockwood Taylor and Lewis J values.

Some of the conclusions we may draw from these results are the following:

(1) Consistent mass and added mass matrices may eflectively be combined to yield charac-
teristic modes and frequencies of submerged bodies. With the inclusion of an approximate added
stiffness matrix in the formulation, derived by a consistent approach to the buoyancy forces,
floating bodies may also be analysed.

(2) Very accurate calculation of three dimensional reduction factors is not worthwhile, since
these factors depend on characteristic mode shapes which vary with structural properties. It
should however be noted that the values quoted in some of the literature appear to contain some
slight numerical inaccuracies.

(3) The lowest mode of symmetric motion of a ship (namely in a vertical plane) may theoreti-
cally be pitch or heave, depending on waterline and mass distribution.

(4) The lowest two modes of relatively flexible ships, such as tankers and Great Lakers, may
entail significant distortion of the neutral axis.

(5) The results obtained here may be used to assess the accuracy of approximate techniques
for bodies of more complicated configuration. The next stage is to combine a three dimensional
finite element representation of the structure with a numerical model of the three dimensional
flow past more complex geometries than the spheroid. Methods under investigation involve
fluid finite elements, and distributed singularities on or near the body surface.
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APPENDIX A. PROPERTIES OF GENERALIZED LEGENDRE FUNCTIONS

Our derivation of the added mass matrix for a spheroidal element makes use of certain
properties of generalized Legendre functions, 7" and UM These are described by the following
relations, which are based on results in Erdélyi (1953).

The functions w = T7(z) and w = UM(z) are solutions of Legendre’s differential equation

d2w | dw m?
(1 —-—Zz)a-zz'—_ZZa‘g'i‘lip(p'l" 1) —-T::——'ZZ] w = 0.
They satisfy Tmz) = (1 —22)%’”91""%2: p=m
and Up(e) = (21 T8eE)p o,

where P, and @, are respectively Legendre polynomials of the first and second kind of degree p.
The generalized functions 7'y* and U} obey the recurrence relations

(p=m+1) T3a(2) = (2p+1) 2T3(2) — (p+m) T34(2)
and (p—m+1) Upta(2) = (2p+ 1) 2Up'(2) — (p +m) UpL(2).

We require these functions for the case m = 1, and p = any positive integer. They may be found
by using the above recurrence relations and the expressions

Ti(z) = (1-2%)3
T}(z) = 3z(1—2%)},

' z+1 z .
Ui(z) = Jz’lg;:]“;g:—l‘] (2—1)z,

We also require the relation

(22— 1) — 7= = p2Up(2) = (p+m) Upl(2).

With m = 1, this leads to . )
—zUy(z) Uy_1(2) -1
Eoe |0 S

which is needed in evaluating the added mass matrix. The special case of p = 1 is given by

~Uiz(z)  _ 1ol
e okt EEaL

z+1 -1

1—(22m2)] —1.

All these expressions may be calculated by simple subroutines, for appropriate values of z and
any positive integer p.
The generalized Legendre functions of the first kind also satisfy the orthogonality relations
(p+m)! 2
1 iy
[ 7o) T ap = {Tp=mi2p
- 0, pr

p=r

where m = 1,2, ... with m < 5.
67-3
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APPENDIX B. DETAILS OF SPHEROID MASS AND STIFFNESS MATRICES

This appendix lists the numerical expressions to which reference is made in § 3.1.
The influence functions X;(§) are given by

Xi(8) = (1+26) (E-1)%
X,(8) = E(E-1)%,

Xy(€) = E3(3-2£),
Xy(8) = £(6-1).

The area 4 of the spheroidal element at section £ is expressed in terms of the area of the left
hand end 4, (see figure 15) by
A = A0(1+ Z o-igi)y

i=1,2
n(x—17)
where oy = TR
(x—mn)*
and Ty = —--—1—_'_'—77—2— .

The moment of inertia 7 at section £ is expressed in terms of the inertia 1, at the left hand end by

4
I= Io(1+ > Tigi),
i=1

dn(x—1n)
where 7'1=—~-—1-_—;7—é—, |

o= 2672 —1) (x—19)
2 (1=m32  ~
ooy =m)?
N (D L
;= =
D

The mass and stiffness matrices of the spheroidal element, M* and K respectively, are given by
the definitions which follow.
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